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ABSTRACT 
 

   In this paper, leveraging recent advancement in 
MEMS and NANO technology, we introduce a new type 
of denial of service attack to wireless networks: low 
power, distributed jammer network (DJN). Jamming 
attack on wireless networks was traditionally treated from 
the perspective of individual jammers. We advocate an 
approach from a networked perspective, and using this 
networked approach we show that some interesting 
results can be obtained. In the paper, we demonstrate that 
DJN can cause a phase transition in the performance of 
the target network. We employ Percolation Theory to 
explain such phase transition, analyzing the impact of 
DJN on the connectivity of the target network, and 
providing lower and upper bounds for percolation of the 
target network to occur in the presence of DJN. We also 
provide scaling relationship of the node intensity and the 
number of jammers with power constraints.  
 

1.    INTORDUCTION 
   Radio technology has evolved a great deal since its 

invention in the late nineteenth century. One aspect of this 
evolution is the form factor, which undergoes a transition 
from vacuum tube radio, transistor radio, micro sensor 
radio, to future’s nanotube radio, as shown in Figure 1. 
Such technological advancement can bring radical 
changes in how we design and use radio devices. In this 
paper we introduce an example of such new designs: 
Distributed jammer network (DJN). A DJN is composed 
of a large number of tiny, low-power jammers, which are 
distributed inside a target network and emit radio energy 
to disrupt its communications. Recent advancement in 
MEMS and NANO technology [24][25] makes it possible 
to make jammers sufficiently small that a DJN can take 
the form of a dust suspending in the air, thus the name 
Jamming Dust (a takeoff from “Smart Dust” composed of 
micro sensors [26]). Miniaturization of jammers should 
be less challenging than that of wireless sensors since 
jammers just emit noise signal without requiring complex 
modulation, filtering and other signal processing 
functions. Therefore, new miniature devices such as 
nanotube radio may find their first application in jamming 
dust.  

 

 
Courtesy Zettl Research Group, LBNL and UCB  

 
Figure 1:  Evolution of radio technology.  

 
 
   DJN, in a sense, forms a mirror-image to distributed 

wireless network (DWN), e.g. distributed sensor network 
(DSN), for DWN communicates information, whereas 
DJN disrupts such communications. The importance of 
DJN can be seen in the following application scenarios.  

 
   Military/security applications:  DJN can be deployed 

to form a low-power (possibly air-born) jamming dust 
that are more attractive than traditionally high-power 
jammers because of its low deployment profile (the naked 
eye can not see the nanotube radios) and its much reduced 
effect on self-interference. The importance of such self-
interference-free jamming has been demonstrated in the 
second Iraq war as reported in Washington Post [29]. 
Future warfare will increasingly depend on radio signal 
for command and control, weapons guidance, GPS 
navigation, etc. DJN can play an important role in future 
net-centric warfare.  

 
   Civilian applications: DJN can have many civilian 

usages as well. Although owning or using jammers is 
illegal in USA, and is tantamount to property theft (the 
property being the government owned frequency); it is 
legal and put into sensible use in some other countries 
[27]. For example, in France, jammers are used in 
restaurants or theaters to silence obnoxious cell phone 
users. In Italy, jammers are used in exam rooms to 
frustrate potential cheaters. In Mexico, jammers are 
deployed in churches to prevent disruption of sacred 
services. In such cases, deploying a low-power DJN 
instead of high-power ones is clearly preferable due to 
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health concerns. In fact in today’s world of wireless 
device proliferation (cell phone, WiFi, WiMax, and 
Bluetooth devices, wireless game console, sensor 
networks, etc.), DJN can spontaneously form in the 
crowded ISM bands since devices speaking different 
MAC protocols are essentially jammers to one another 
within the same frequency band. This kind of jamming 
may already become a reality as indicated by the reported 
incident of possible Xbox game console interfering with 
WiFi [28].  
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   DJN is different from traditional jammers [1] used by 

the military, which are typically located outside the target 
network and cause inference by beaming high-power 
radio signal over long distance using directional antenna. 
DJN is also different from the kind of in-network 
jamming studied recently, which uses jammers of similar 
size as DWN devices whereas DJN can use much smaller, 
lower-power devices than DWN nodes. More 
importantly, existing works on jamming are mostly from 
the perspective of individual jammers. DARPA realized 
the importance of DJN in future battlefields and founded 
the WolfPack program [16], which is essentially a high-
power, large-node version of DJN but of which not much 
technical detail is available in the public. Despite DJN’s 
importance, not much work on the subject has emerged in 
the research community. This paper intends to advocate 
studying jamming from a network perspective, rather than 
from the perspective of individual jammers. That is, we 
ask the question: What is the impact of a network of 
jammers. A large number of jammers have a network 
effect which can not be fully accounted by that of 
individual jammers. The network approach is conducive 
to broaden the problem scope considerably and increases 
the likelihood of obtaining important/interesting results.  

 
   The advantages of DJN are reminiscent of those of 

DSN. First, DJN is robust because it is composed of a 
large number of devices with ample redundancy. Second, 
DJN nodes emit low power, which is advantageous 
because of health, self-interference concerns. Third, DJN 
is hard to detect because of nodes’ small size (the naked 
eye can not even see a nanotube radio) and low power 
emission. Forth, DJN provides extended coverage with 
high energy efficiency. In Section 4, we will show that 
using the same total amount of power, a DJN of n nodes 
covers an effective area n1-2/α times larger than that of a 
single jammer, where α is the path loss exponent with a 
typical value of 4. So the typical power efficiency gain of 
DJN is n1/2, which is unbounded as n goes to infinity.  

 

 
 

Figure 2:  The jamming performance as a function of 
number of jammers 

 
 
   To provide empirical evidence and to test the 

hypothesis that DJN provides superior performance to 
traditional jammers, we show some simulation results in 
Figure 2. The simulation is performed using Qualnet [30], 
with the following setup: The target network (DWN) has 
100 nodes deployed in an area of 1000 by 1000 meters, 
with half of the nodes having CBR UDP sessions with the 
other half of the nodes. The MAC protocol used is 
IEEE802.11, and two routing protocols are used: AODV 
and DSR. We start by deploying 10 jammers with the 
same transmitting power as the target device (15 dbm). 
Then we increase the number of jammers while reducing 
jamming power, holding the total power consumed by the 
jammers constant. The performance metric is the ratio of 
DWN throughput with jamming versus that without 
jamming. From Figure 2, we can see a phase transition 
occurring at roughly 20 jammers, where throughput ratio 
drops precipitously. Given that the total power 
consumption is constant, the benefit of using a large 
number of low-power jammers (i.e., DJN) is evident.   

 
   The contributions of the paper are the following: 1) 

We identify an effective jamming approach: DJN 
consisting of large number of low-power jammers that 
have important military and civilian applications. 2) We 
report a phase transition of jamming performance. We 
explain the phase transition by using Percolation Theory. 
We derive bounds on critical conditions, which is 
practically useful in selecting DJN parameters to force the 
phase transition to occur. 3) We provide a scaling 
analysis of the node intensity and the number of jammers 
with power constraints.  
       
      Much previous work on jamming focuses on the 
physical layer [1]. Recently, papers on jamming in 
wireless networks, especially wireless sensor network due 
to its vulnerability from field deployment, began to 
appear [2-15]. The fundamental difference between our 
work and existing work is that we consider the problem 
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from the perspective of a network of jammers, instead of 
that of individual jammers as typical with previous work.   
 
      The paper is organized as the following: In Section 2, 
we first state our assumptions, and then describe the 
modeling of network connectivity in the absence of DJN 
using Percolation Theory. In Section 3, we explain the 
phase transition in DWN performance caused by DJN by 
the method of Percolation Theory. We provide a scaling 
analysis of DJN parameters in Section 4. We conclude in 
Section 5.  
 
 

2 ASSUMPTIONS AND PERCOLATION OF 
DWN IN THE ABSENCE OF DJN 

 
   In the following, we make the following 

assumptions. We assume that DWN and DJN are 
deployed in a 2-D surface, with the radio energy 
spreading out in the 3-D space; and that radio antenna of 
both DWN and DJN are omnidirectional. We assume 
node deployment in DJN and DWN are uniformly 
random, forming Poisson point processes [19], which is 
justifiable for applications such as jamming dust in 
battlefields or among random crowds. We assume no 
knowledge about the DWN device type and network 
protocols, which is true in adversarial scenarios where the 
enemy device type or the enemy identity itself can hardly 
to be known a priori, e.g., in terrorist attacks. In addition, 
DWN packets can be encrypted to reveal as little 
information as possible. Thus methods [4][5][15] that 
take advantage of the knowledge about network protocol 
are not applicable here.  

 
   As for jamming mechanism, we assume jammers in 

DJN are reactive jammers, which are among the most 
effective jamming methods [9]. A reactive jammer senses 
a wide frequency range and jams the channel on which it 
detects radio activity. Recent advancement in software 
defined radio and UWB radio provides technology to 
make such jammers. The jammer has two parameters: 
period P and duty cycle D. That is: after sensing a busy 
channel, a jammer becomes active in D percentage of 
time in a period of P seconds after which the jammer 
restarts sensing again. Since the slot time represents an 
elementary transmission unit, P can be chosen to be on 
the same order of magnitude of a slot time in DWN, 
which is roughly 20 μs in IEEE 802.11 and 802.15.  Since 
jamming stops once the channel is sensed to be idle, such 
reactive jammer automatically adapts to DWN packet 
size: large DWN packet size causes the jammer jamming 
for a longer duration whereas small DWN packet size 
causes the jammer jamming for a shorter duration, but 
both with constant duty cycle D. D should be selected to 
be no less than the redundancy provided by the DWN 
error-correcting code; so that the intensity of jamming is 

just enough to ensure that every DWN packet is destroyed 
without wasting unnecessary energy. In typical military 
applications, D = 30% is considered adequate [1]. Jammer 
parameter selections, of course, should depend on the 
particular application in question, and here we assume we 
can make adequate selections. If DWN does not use 
error-correcting code, the jammer jams for one slot time, 
ignores the ensuing period of busy channel (letting the 
current damaged packet to finish), and begins to jam the 
channel again when the channel returns busy after an idle 
period (e.g., inter-frame time in IEEE802.11). Such 
jamming can achieve very high jamming gain, i.e., 
expending a small amount of jamming energy to waste a 
large amount of DWN transmission energy.   

 
   We assume that transmission powers of both DWN 

and DJN radios are adaptable up to their respective 
maximum transmitting powers. If the maximum 
transmitting powers of DWN and DJN nodes are the 
same, we consider a DWN receiver is jammed if there 
exists a DJN jammer that is closer to the receiver than the 
DWN transmitter. For in such case the jammer can 
always adapt its power to overpower the transmitter 
however the transmitter adapts its own power. If the 
transmitting powers of DWN and DJN nodes are 
different, we properly scale the distances, details of which 
will be given later.  
    
      Next we describe stochastic modeling of DWN/DJN. 
We assume that average numbers of nodes per unit area 
in DWN and DJN are λ1 and λ2, respectively, and the 
maximum radio range in DWN is r1 (corresponding to its 
maximum transmission power). A suitable stochastic 
model for describing connectivity in DWN is the Poisson 
Boolean model B(λ1, r1) [19], defined below. 
    
      DEFINITION 1.  In a Poisson Boolean model B(λ1, r1), 
nodes are distributed in a 2-D space R2 according to a 
Poisson point process with intensity λ1, which is the 
average number of nodes per unit area. Specifically, the 
probability that there are k nodes in an area A is given by:  
 

1 1( )( )
!

k
A

A
AP N k e

k
λ λ−= =                     (1) 

 
Two nodes are considered being connected if the distance 
between them is no larger than the maximum radio range 
r1.  
    
      We can visualize that balls of radius r1/2, whose 
centers corresponds to node locations, are scattered in 
space, and an edge is formed if two balls touch each 
other. The sets of nodes and edges in DWN, V1 and E1, 
constitute a graph G1(V1, E1). Connected components of 
G1 are called clusters. Clusters can be finite or infinite in 
the infinite 2-D space. The network is composed of a 
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number of clusters, which by definition have no 
connection between them (an isolated node is considered 
as a one-node cluster). The key question relevant to 
network connectivity is whether there exists an infinite 
cluster, so called a giant cluster that includes a large 
proportion of nodes in the network. We will address this 
question later in the section.   
    
      DJN is described by a Jamming process J(λ2, β), 
defined below.  
       
      DEFINITION 2.  A Jamming process J(λ2, β) consists of 
a Poisson point process of jammer intensity λ2 with a 
parameter β defined as such that a DWN receiver is 
considered jammed if a jammer is within a distance of βv, 
where v is the distance between the transmitter and 
receiver in DWN.  
    
      The parameter β is designed to allow flexibility to 
allow devices in DJN and DWN to have different 
transmitting power levels. The presence of DJN causes 
some links between nodes of DWN to break. We require 
bi-directional links for DWN. Thus, if a jammer is within 
a distance βv to either of the two DWN nodes that had a 
link before, the link is now considered to be broken.        
    
      Now let us consider percolation of DWN in the 
absence of DJN. Consider a DWN described by a Poisson 
Boolean process B(λ1, r1) in a infinite 2-D space, and 
randomly select a node. We can set the origin of the 
coordinate system at this node without loss of generality 
because B(λ1, r1) has translational invariance. Let C1(0) be 
the cluster that the origin is connected to, the size of 
which, |C1(0)|, is a parameter of interest. If |C1(0)| is 1, 
the origin is isolated. If |C1(0)| is finite, the origin has 
poor connectivity (since the total number of nodes is 
infinite). If |C1(0)| is infinite, the origin has reasonably 
good connectivity. We can parameterize the network 
connectivity by the percolation probability θ1(λ1), which 
is defined as probability that |C1(0)| is infinite at a given 
λ1. According to the theory of continuum percolation [19], 
there is a critical intensity λ1,c, such that, 
 

1 1,
1

1 1,

0  
( )

0  
c

c

if
if
λ λ

θ λ
λ λ

= <⎧⎪
⎨> >⎪⎩

                       (2) 

 
And 

1 1,
1 1

1 1,

0  
( :| | )

1  
c

c

if
P C C

if
λ λ
λ λ

= <⎧⎪∃ = ∞ ⎨= >⎪⎩
                (3) 

 
      In other words, the network behaves in two regimes: 
Sub-critical regime where λ1 < λ1,c, all the clusters are 
finite almost surely, i.e., nodes in the network are 
essentially isolated. Super-critical regime where λ1 > λ1,c, 

there exists a infinite cluster almost surely, i.e., nodes in 
the network are reasonably well connected. 
    
      At the critical point where λ1 = λ1,c, there exists no 
infinite cluster almost surely in a 2-D space, i.e., it 
belongs to the sub-critical regime, which is not always 
true in other dimensions. There is no known analytical 
expression for λ1,c, whose approximate value can be 
obtained by numerical simulation. 
    
      In a number of previous works [20][21], continuum 
percolation has been applied to study the connectivity of 
wireless networks with the assumption that the network is 
considered connected if it is in the super-critical regime.  
     
      
3.   PERCOLATION OF DWN IN THE PRESENCE 

OF DJN 
 
      Now let us consider DWN in the presence of DJN, in 
other words, a joint process of B(λ1, r1) and J(λ2, β). We 
argue that the occurrence of percolation in DWN implies 
a phase transition in network performance since the 
network goes from a disconnected state to a connected 
one. For jamming, we are interested in the reverse 
direction of the transition, but in the following we 
describe it in the manner of the forward direction (from 
the disconnected state to the connected state) in 
accordance to the standard treatment of percolation 
theory. The key questions we consider here are: 1) 
whether percolation in DWN still occurs in the presence 
of DJN; and 2) if yes, how the percolation of DWN is 
impacted by the presence of DJN. The answer to the first 
question is affirmative as long as certain condition on 
J(λ2, β) is satisfied. The answer to the second question is 
that the presence of DJN pushes up the value of λ1,c, 
making it more difficult for DWN to percolate. To obtain 
those answers, we adopt a constructive approach similar 
to the Penrose’s approach [19], and not only provide the 
existence proof but also bounds on the critical intensity. 
Our results are summarized in Proposition 1 below.      
    
      PROPOSITION 1.  In the joint B(λ1, r1) and J(λ2, β) 
process, the sufficient condition for percolation to occur 
is given by: 

 
2 2

2 1 0.548rλ β ≤                                  (5) 
 
The precise meaning for percolation to occur is: there 
exists a critical intensity λ1,c >0, above which the 
probability of the existence of infinite cluster is strictly 
positive, 
 
      PROOF.  We proceed by deriving lower and upper 
bounds on λ1,c. Lower bound tells us the necessary 
condition in terms of DJN parameters for percolation to 
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occur. Upper bound tells us the sufficient condition for 
percolation to occur, i.e., equation (5).   
    
      LOWER BOUND.  We first provide an overview: In 
Penrose’s approach, the B(λ1, r1) process is linked to a 
suitable branching process. Due to the translational 
invariance of B(λ1, r1), we need only to study the behavior 
of the origin. In the branching process, origin is the root 
and it gives birth to children, which in turn give birth to 
their own children. A parent is said to have a child if the 
distance between parent and child is within radio range r1, 
with proper accounting for the overlap between parent 
and children. Percolation occurs when the offspring of the 
branching process is infinite. Detailed analysis is as 
follows.  
    
      In B(λ1, r1), let xk indicate a point of kth generation. 
Let S(xk, r1) be a ball centered at xk with a radius r1. 
Consider the children of a point of kth generation, xk, 
which is located at a distance u away from its own parent 
at (k-1)th generation, xk-1. These children of (k+1)th 
generation are located in the following region: 
 

1 1 1 1{ ( , ) \ ( , )} { :| | }B
k k k kA S x r S x r y y x r+ −= ∩ − ≤  

 
Referring to Figure 3, let gB(v|u) be the length of the 
curve given by:  
 

1 1 1{ ( , ) \ ( , )} { :| | }k k kS x r S x r y y x v− ∩ − =  
 

Straightforward trigonometry gives: 
 

2 2 2
1 1

1 1

1

2 cos       
( | ) 2

0                                       0

B
r u vv if r

g v u uv

if v r u

−
⎧ ⎛ ⎞− −⎪ − < <⎜ ⎟⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪

< < −⎪⎩

u v r
  (6) 

 
 

 
 
Figure 3:  Illustration for computing gB(v|u) 

   
According to the definition of the B(λ1, r1) process, the 
expected number of children of xk is given by: 
 

1

1 1 1 1
0

( | )
r

B B B
k kN A g v uλ λ+ += = ∫ dv  

 
         Now consider the joint B(λ1, r1) and J(λ2, β) 
process. In such process a children can communicate with 
its parent only if no jammer is located within βv distance 
of the parent, and vice versa. So we require that no 
jammer exists in the region S(xk, βv)US(xk+1, βv), which 
we call the effective jamming area Aj, and this area can be 
computed as: 
 

( ) ( )2 2

0

( | )
v

B
jv g w v dw vπ β γ β A+ ≡ ≡∫  

 
In the above γ is a constant reflecting the geometry of 
jamming area. We can obtain approximate value of γ 
through numerical integration, which gives: γ≈5.055. So 
the probability that there is no jammer in Aj is:  
 

2 2
2 2jA ve eλ λ γβ− −=  

 
Now let us define a new version of gB(v|u) that counts 
only the length free of jamming in Aj:  
 

2 2
2( | ) ( | )v Bg v u e g v uλ γβ−=                       (7) 

 
Because B(λ1, r1) and J(λ2, β) are independent processes, 
the expected number of children of xk in the joint process, 
with the effect of jamming accounted by (7), is given by: 
 

1

1 1 1 1
0

( | )
r

k kN A g v uλ λ+ += = ∫ dv  

 
         In the same manner, the expected number of grand 
children of xk is given by: 

xk
u 

xk-1

xk+1

gB(v|u) 

v r1
 

1 1

2 1 1
0 0

( | ) ( | )
r r

kN g v w dv g w u dwλ λ+

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫  

 
Let us define: 

1

1
0

( | ) ( | ) ( | )
r

g v u g v w g w u dw= ∫  

 
Then we have: 

1
2

2 1 1
0

( | )
r

kN g v u dvλ+ = ∫  
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Now let us define recursively: 
 

1

1
0

( | ) ( | ) ( | )
r

n ng v u g v w g w u dw−= ∫  

 
Then the expected number of nth generation offspring 
from an ancestor which has a distance u from its own 
parent is given by: 
 

1

1
0

( | )
r

u n
n nN g v u dvλ= ∫  

          
      We can recast the above equation in the form of 
Hilbert-Schmidt operators [23]. Let us define: 
 

1

0

( ) ( ) ( | )
r

fT u f u g v u dv= ∫                       (8) 

 
Then we have: 

( )1 1
u n n
nN T uλ=  

 
And the total number of offspring from an ancestor which 
has a distance u from its own parent is given by: 
 

( )1 1
1 1

u u n n
n

n n

N N Tλ
∞ ∞

= =

= =∑ ∑ u                    (9) 

 
 
      The above sum is guaranteed to converge if λ1 is 
smaller than |T1|-1, where |T1| is the operator norm of T1, 
which in our case is equal to α, the largest eigenvalue of 
T1 (details see [34][19]). So λ1,c is lower-bounded by α-1, 
which can be computed through Monte-Carlo simulation. 
The results from numerical simulation is reported in 
Figure 5, where we plot the lower bound of λ1,c (indicated 
as LB(μ)) as function of μ ≡ λ2γβ2, with  λ1 = 2 to conform 
with the results in [19]. Recall that γ is a constant with an 
approximate value of 5.055. 
 
      UPPER BOUND.  To obtain upper bound, we link the 
joint B(λ1, r1) and J(λ2, β) process to site percolation in a 
triangular lattice with edge length of r1/2. Each site is 
defined as the “flower” centered at a vertex of the lattice. 
The flower is bounded by six circular arcs, each centered 
at a midpoint of one of six edges adjacent to the vertex 
and having a radius of r1/2. A site is called occupied if 
there exists a point from B(λ1, r1) in the associated flower. 
Because of the geometric construction, if two adjacent 
flowers are occupied by two points in B(λ1, r1), then the 
distance between the two points is no more than r1. 
Therefore, in the absence of DJN, occurrence of site 

percolation in the triangle lattice translates into 
percolation in B(λ1, r1). For percolation in a triangle 
lattice to occur, the site occupancy probability must be no 
less than a critical value pc (equal to 0.5 in 2-D lattice).  
In B(λ1, r1), the site (flower) occupancy probability pf can 
be computed as:  

11 fA
fp e λ−= −                           (10) 

 
where Af is the area of flower and is approximately 0.206 
r1

2.  
 
 

                          
 
Figure 4:  Illustration of the linkage to the site 
percolation in triangular lattice for computing the 
upper bound on critical intensity λ1,c. The “flower” is 
the shaded area. 
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Figure 5:  Lower and upper bounds, LB(μ) and UB(μ), 
on critical intensity λ1,c as a function of μ ≡ λ2γβ2, the 
arrow indicating the movement toward phase 
transition point indicated by the cross.   
    
                
      Now let us take jamming into account. In the joint 
B(λ1, r1) and J(λ2, β) process, two nodes, x1 and x2, 
separated by a distance v, can communicate with each 
other only if no jammer is located within βv distance of 
each other. This is guaranteed if no jammer exists in the 
region Aj=S(x1,f, βr1)US(x2,f, βr1),  where x1,f and x2,f are 
the centers of flowers associated with x1 and x2 and S(x, r) 
is a ball centered at x with a radius r. Aj can be obtained 
by simple numerical integration, with an approximate 
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value of 1.264 β2r1
2. The probability pj of no jammers in 

Aj is given by:  
 

2 jA
jp e λ−=                               (11) 

olation occurs if the site 
ccupation probability is no less than the critical site 

obability, i.e.,  

             

 
    
      In the joint B(λ1, r1) and J(λ2, β) process, the 
probability that a site is occupied is pf pj since it requires 
two events: 1) the site is occupied in DWN (with 
probability pf); and 2) the site is not jammed by DJN 
(with probability pj). Perc
o
occupation pr
 
        ( )1 21 f jA A

f j cp p e e pλ λ− −= − ≥ =   0.5

Or  
 

 

( ) ( )2 2
2 2 11.264

1 2
1

ln 1 0.5ln 1 0.5

0.206

jA r

f

ee

A r

λ λ β

λ
−−

≤ − −     (12) 

, again 
h  λ = 2 to conform with results in [19]. Recall that γ 

tion probability. On the other hand, percolation 
an be guaranteed (upper bound exists) as long as we 

have:  

on that 
colation in DWN can not occur beyond this point, but 

since λ2β r1 is proportional 

he number of jammers within the radio range of DWN 

nd forces the DWN become 
connected, and accordingly causing a phase transition 

, 0.707) where the lies 
 the sub-critical regime, i.e., the network transitions 
om connected to disconnected.    

 
 

 and DJN devices are P1, P2, 
respectively. We assume a standard path loss model for 
both DWN and DJN radios: 

 
    
      The results from numerical simulation is again 
reported in Figure 5, where we plot the upper bound of 
λ1,c (indicated as UB(μ)) as function of μ ≡ λ2γβ2

wit 1 
is a constant with an approximate value of 5.055.  
    
      The upper bound abruptly ends around μ = 0.7, at 
which point pj becomes larger than pc, i.e., the probability 
of the flower being jammed is greater than the critical site 
occupa
c

 
2 2

2 11.264 0.5r
j cp e pλ β ≤ =                    (13) 

 
It is straightforward to invert equation (13) to obtain 
equation (5). Existence of upper bound guarantees the 
occurrence of percolation at a λ1 somewhere below the 
upper bound.  The termination of the upper bound curve 
around μ = 0.7 in Figure 5 is not an indicati
per
rather is an artifact of the method used.    Q.E.D.  
    
      It is clear from Figure 5 that the effect of DJN is to 
push up the both lower and upper bounds for critical 
intensity of DWN. Also the effect of DJN is exerted in 
terms of the collective factor μ ≡ λ2γβ2 (μ=0 
corresponding to the absence of DJN). The sufficient 
condition for percolation in DWN to occur, i.e., Equation 
(5), also solely depends on the collective factor λ2β2r1

2. 
This should not be surprising 2 2 

to t
(r1 is set to be 2 in Figure 5).  
    
      Looking from another angle, given a connected DWN 
with such λ1 that percolation occurs, one can always 
increase λ2 and/or β so that the joint state of DWN and 
DJN will go under the lower bound, as shown by the 
arrow in Figure 5. Recall that the lower bound provides 
the necessary condition for percolation to occur, going 
under the lower bou
dis
in DWN performance.  
    
      Given the results we have derived, we are now ready 
to explain the phase transition shown in Figure 2. Scaling 
the distance unit so that the radio range is 2, we can find 
the operating point (λ1, μ) through straightforward 
calculation once λ2 is given. The phase transition occurs 
around λ2 = 0.2, giving the operating point at (λ1, μ) = (1, 
0.707), shown in the Figure 2 as the point where the 
arrow points to. Thus phase transition occurs when the 
presence of DJN moves the operating point from (1, 0) in 
the absence of jammers, where the network lies in the 
super-critical regime to the point (1
in
fr

4.   SCALING BEHAVIOR OF PERCOLATION IN 
DWN IN PRESENCE OF DJN 

  
      In this section, consider the scaling behavior with 
respect to the node intensity and the number of jammers 
in the DJN with power constraints. Suppose the 
transmission powers of DWN

t
r

PP
rα

=  

In the above Pt, Pr are transmitting and received powers, 
respectively, and r is the distance between transmitter and 
receiver. We have omitted a constant antenna gain 
oefficient because it is irrelevant to the analysis of 

istances v and βv to a receiver in 
DWN, respectively, should have the same received power 
at the receiver, i.e.,    

c
scaling behavior here.  
 
      Definition 2 implies that a transmitter in DWN and a 
jammer in DJN, at d

1 2

( )v v

1

2P P
α αβ

P α
=     or   

1P
β

⎛ ⎞
= ⎜ ⎟            (14) 

consumption per unit area in DJN, i.e., λ2P2.  We know 

⎜ ⎟
⎝ ⎠

 
      An important question to ask is: how to maximize the 
impact of DJN given the constraint of fixed power 
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from the last section that DJN’s impact on DWN is in 
terms of the collective λ2β2 r1

2, which using equation (14) 
can be written as: 

( )

22
2 212 2 1 2

2 1 2 2 22
1 1,

1

r

r Pr
P P

α αα
α P αλ β λ λ λ

− ⎛ ⎞⎛ ⎞
⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

     (15) 

an make the 
llowing statement based on equation (16). 

 on DJN, the impact of DJN on 
WN scales as λ 1-2/α.  

er jammers rather than a few high power jammers.   
    

this approach and 
are currently working in this direction.  

 

 
consortium under the grant W911NF-07-2-0027.   

Trans. 
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003. 
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2005. 

, pages 80-89, 2004. 

.  

  
 King and E. 

EEE 802.11 under 

[16] darpa.mil/STO/strategic/wolfpack.html

  
In the above, the last term is constant due to power 
constraint, P1,r (=P1/r1

α) is minimum received power in 
DWN corresponding to the radio range, which again can 
be assumed as a constant. Therefore we c
fo
 
      PROPOSITION 3. Under the unit area power 
consumption constraint
D 2
 
      In typical radio environments, α is close to 4, so to 
maximize DJN impact under the unit area power 
constraint, the optimal strategy is to deploy lots of low 
pow

5.   CONCLUSION 
   In this paper, motivated by the advancement in radio 

technology, we introduce a new type of jamming—DJN, 
which is composed of a large number of tiny, low-power 
jammers. We demonstrated that DJN can cause a phase 
transition in target network performance even when the 
total jamming power is held constant. We explained the 
phase transition using Percolation Theory, and analyzed 
scaling behavior of node intensity and number of nodes in 
DJN. We believe approaching the problem of jamming in 
wireless networks from a network perspective can 
broaden the research scope significantly and can bring out 
some interesting results otherwise unattainable by 
focusing on individual jammers. As for future work, we 
think the interplay between DJN and DWN makes for 
intriguing problems, which cut across network layers: 
device placement, topology control, power control, 
medium access, routing, and data transport. Investigating 
those problems can result in deeper understanding of not 
only DJN but DWN as well. We believe a lot more 
interesting results can be obtained from 
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